Abstract

AbstractLurie's representability theorem gives necessary and sufficient conditions for a functor to be an almost finitely presented derived geometric stack. We establish several variants of Lurie's theorem, making the hypotheses easier to verify for many applications. Provided a derived analogue of Schlessinger's condition holds, the theorem reduces to verifying conditions on the underived part and on cohomology groups. Another simplification is that functors need only be defined on nilpotent extensions of discrete rings. Finally, there is a pre-representability theorem, which can be applied to associate explicit geometric stacks to dg-manifolds and related objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.