Abstract

FAK (focal adhesin kinase), a tyrosine kinase, plays an imperative role in cell-cell communication, particularly in cell signaling systems. It is a multi-functional signaling protein, which integrates and transduces signals into cancer cells through growth factor receptors or integrin and its interaction with Paxillin (PAX). The molecular processes by which FAK promotes the development and progression of cancer have progressively established the possible relationship between FAK-PAX complex in many types of cancer. The interaction of FAX and PAX is very important in breast cancer and thus acts as an essential biomarker for drugs, vaccines or peptide inhibitor designing. In this regard, computational approaches, particularly peptide designing to target the binding interface of the interacting partners, would greatly assist the design of peptide inhibitors against various cancer. Accordingly, in this present study, we screened 236 experimentally validated anti-breast cancer peptides using computational drugs repositioning approach to design peptides targeting the FAK-PAX complex. Using protein-peptide docking the binding site for the HP1 was confirmed and a total of 236 anti-breast cancer peptides were screened. Among the 236, only 12 peptides reported a docking score better than the control. From these 12, Magainin with the docking score - 103.8 ± 10.3kcal/mol, NRC-07 with the docking score - 100.8 ± 16.5kcal/mol, and Indolicidin with the docking score - 101.7 ± 3.9kcal/mol, peptides potentially inhibit the FAX-PAX binding. Calculation of protein's motion and FEL revealed the binding and inhibitory behavior. Moreover, binding free energy (MM/GBSA) confirmed that Magainin exhibited the total binding energy - 53.28kcal/mol, NRC-07 possessed the TBE - 44.16kcal/mol, and Indolicidin reported the TBE of - 40.48kcal/mol, thus explaining the inhibitory potential of these peptides. In conclusion, these peptides exhibit strong inhibitory potential and could abrogate the FAK-PAX complex in in vitro models and thus may relieve the burden of breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call