Abstract

Relative force depression associated with muscle fatigue is reported to be greater when assessed at short vs. long muscle lengths. This appears to be due to a rightward shift in the force-length relationship. This rightward shift may be caused by stretch of in-series structures, making sarcomere lengths shorter at any given muscle length. Submaximal force-length relationships (twitch, double pulse, 50 Hz) were evaluated before and after repetitive contractions (50 Hz, 300 ms, 1/s) in an in situ preparation of the rat medial gastrocnemius muscle. In some experiments, fascicle lengths were measured with sonomicrometry. Before repetitive stimulation, fascicle lengths were 11.3 +/- 0.8, 12.8 +/- 0.9, and 14.4 +/- 1.2 mm at lengths corresponding to -3.6, 0, and 3.6 mm where 0 is a reference length that corresponds with maximal active force for double-pulse stimulation. After repetitive stimulation, there was no change in fascicle lengths; these lengths were 11.4 +/- 0.8, 12.6 +/- 0.9, and 14.2 +/- 1.2 mm. The length dependence of fatigue was, therefore, not due to a stretch of in-series structures. Interestingly, the rightward shift that was evident when active force was calculated in the traditional way (subtraction of the passive force measured before contraction) was not seen when active force was calculated by subtracting the passive force that was associated with the fascicle length reached at the peak of the contraction. This calculation is based on the assumption that passive force decreases as the fascicles shorten during a fixed-end contraction. This alternative calculation revealed similar postfatigue absolute active force depression at all lengths. In relative terms, a length dependence of fatigue was still evident, but this was greatly diminished compared with that observed when active force was calculated with the traditional method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call