Abstract

We report on the First Workshop on Bias in Automatic Knowledge Graph Construction (KG-BIAS), which was co-located with the Automated Knowledge Base Construction (AKBC) 2020 conference. Identifying and possibly remediating any sort of bias in knowledge graphs, or in the methods used to construct or query them, has clear implications for downstream systems accessing and using the information in such graphs. However, this topic remains relatively unstudied, so our main aim for organizing this workshop was to bring together a group of people from a variety of backgrounds with an interest in the topic, in order to arrive at a shared definition and roadmap for the future. Through a program that included two keynotes, an invited paper, three peer-reviewed full papers, and a plenary discussion, we have made initial inroads towards a common understanding and shared research agenda for this timely and important topic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.