Abstract

Experiments are needed to locate phase boundaries and to provide both Hugoniot data and off-Hugoniot data (such as principle isentrope, refreezing, dynamic strength, etc.) achieved through complex loading paths. The objective of the current work was to de- velop a large bore (3.5 inch or greater) powder gun capable of accelerating projectiles to moderately high velocities exceeding 2 km/s for impact experiments. A total of 24 ex- periments were performed to measure the projectile velocity, breech strain, and projectile tilt to demonstrate the performance of the gun up to the maximum breech capacity of 16 pounds of propellant. Physics experiments using a multislug method were performed to obtain sound speed and Hugoniot for shocked cerium metal and to demonstrate the ability of the large bore gun to conduct well-defined, plate-impact experiments. In addition, six experiments were performed on the prototype containment system to examine the ability of the launcher and containment system to withstand the impact event and contain the propellant gases and impact debris postshot. The data presented here were essential for qualification of the launcher for experiments to be conducted at the U1a complex of the Nevada Test Site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.