Abstract

The worldwide program to understand neutrino oscillations and determine the neutrino mixing parameters, CP violating effects, and mass hierarchy will require a broad combination of measurements. The group believes that a key element of this future neutrino program is a multi-detector neutrino experiment (with baselines of {approx} 200 m and {approx} 1.5 km) with a sensitivity of sin{sup 2} 2{theta}{sub 13} = 0.01. In addition to oscillation physics, the reactor experiment may provide interesting measurements of sin{sup 2} {theta}{sub W} at Q{sup 2} = 0, neutrino couplings, magnetic moments, and mixing with sterile neutrino states. {theta}{sub 13} is one of the twenty-six parameters of the standard model, the best model of electroweak interactions for energies below 100 GeV and, as such, is worthy of a precision measurement independent of other considerations. A reactor experiment of the proposed sensitivity will allow a measurement of {theta}{sub 13} with no ambiguities and significantly better precision than any other proposed experiment, or will set limits indicating the scale of future experiments required to make progress. Figure 1 shows a comparison of the sensitivity of reactor experiments of different scales with accelerator experiments for setting limits on sin{sup 2} 2{theta}{sub 13} if the mixing angle is very small, or for making a measurement of sin{sup 2} 2{theta}{sub 13} if the angle is observable. A reactor experiment with a 1% precision may also resolve the degeneracy in the {theta}{sub 23} parameter when combined with long-baseline accelerator experiments. In combination with long-baseline measurements, a reactor experiment may give early indications of CP violation and the mass hierarchy. The combination of the T2K and Nova long-baseline experiments will be able to make significant measurements of these effects if sin{sup 2} 2{theta}{sub 13} > 0.05 and with enhanced beam rates can improve their reach to the sin{sup 2} 2{theta}{sub 13} > 0.02 level. If {theta}{sub 13} turns out to be smaller than these values, one will need other strategies for getting to the physics. Thus, an unambiguous reactor measurement of {theta}{sub 13} is an important ingredient in planning the strategy for the future neutrino program.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call