Abstract
Uterine leiomyomas are the most common pelvic tumor in women of reproductive age; they cause irregular heavy menstrual bleeding leading to anemia and subsequent negative effects on quality of life. Exosomes have arisen as main players of disease progression in several illnesses, including a range of benign and malignant conditions; however, their role in leiomyomas’ pathophysiology remains unknown. We investigated the effect of exosomes derived from human uterine leiomyoma tumor cells (HULM) and human myometrial cells (UTSM) on the behavior of human endometrial microvascular endothelial cells (HEMEC). HULM- and UTSM-derived exosomes were isolated and cocultured with HEMECs. Then, cell proliferation, mRNA expression, tube formation assay, and RNA-seq were performed. Treatment of HEMEC with HULM-derived exosomes increased cell proliferation by 60% compared to control untreated cells, upregulated C-MYC and VEGFA expression levels, and increased tube formation, length, and branching (markers of angiogenesis). Profiling of miRNA revealed that 84 miRNAs were significantly downregulated and 71 were upregulated in HULM-derived exosomes compared to UTSM-derived exosomes. These findings suggest that HULM-derived exosomes might have effects on HEMEC function, containing factors that enhance endometrial proliferation and angiogenesis, which may contribute to heavy menstrual bleeding. Further research on exosomes in uterine leiomyoma may identify possible novel biomarkers for treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.