Abstract

ObjectiveThe optimization of medical exposure is one of the major issues regarding radiation protection in the world, and The International Committee of Radiological Protection and the International Atomic Energy Agency recommend establishing diagnostic reference levels (DRLs) as tools for dose optimization. Therefore, the development of DRLs based on the latest survey has been required for nuclear medicine-related societies and organizations. This prompted us to conduct a nationwide survey on the actual administered radioactivity to adults for the purpose of developing DRLs in nuclear medicine.MethodsA nationwide survey was conducted from November 25, 2014 to January 16, 2015. The questionnaire was sent to all of the 1249 nuclear medicine facilities in Japan, and the responses were collected on a website using an answered form.ResultsResponses were obtained from 516 facilities, for a response rate of 41 %. 75th percentile of 99mTc-MDP and 99mTc-HMDP: bone scintigraphy, 99mTc-HM-PAO, 99mTc-ECD and 123I-IMP: cerebral blood flow scintigraphy, 99mTc-Tetrofosmin, 99mTc-MIBI and 201Tl-Cl; myocardial perfusion scintigraphy and 18F-FDG: oncology PET (in-house-produced or delivery) in representative diagnostic nuclear medicine scans were 932, 937, 763, 775, 200, 831, 818, 180, 235 and 252, respectively. More than 90 % of the facilities were within the range of 50 % from the median of these survey results in representative diagnostic nuclear medicine facilities in Japan. Responses of the administered radioactivities recommended by the package insert, texts and guidelines such as 740 MBq (99mTc-MDP and 99mTc-HMDP: bone scintigraphy), 740 MBq (99mTc-ECD and 99mTc-HM-PAO: cerebral blood flow scintigraphy) and 740 MBq (99mTc-Tetrofosmin and 99mTc-MIBI: myocardial perfusion scintigraphy), etc. were numerous. The administered activity of many radiopharmaceuticals of bone scintigraphy (99mTc-MDP and 99mTc-HMDP), cerebral blood flow scintigraphy (99mTc-HM-PAO) and myocardial perfusion scintigraphy (99mTc-Tetrofosmin and 99mTc-MIBI), etc. were within the range of the EU DRLs and almost none of the administered radioactivity in Japan exceeded the upper limit of SNMMI standard administered radioactivity.ConclusionsThis survey indicated that the administered radioactivity in diagnostic nuclear medicine in Japan had been in the convergence zone and nuclear medicine facilities in Japan show a strong tendency to adhere to the texts and guidelines. Furthermore, the administered radioactivities in Japan were within the range of variation of the EU and the SNMMI administered radioactivities.

Highlights

  • The International Committee of Radiological Protection (ICRP) recommended three fundamental principles for radiation protection

  • Tc-MIBI), etc. were within the range of the EU diagnostic reference levels (DRLs) and almost none of the administered radioactivity in Japan exceeded the upper limit of SNMMI standard administered radioactivity

  • This survey indicated that the administered radioactivity in diagnostic nuclear medicine in Japan had been in the convergence zone and nuclear medicine facilities in Japan show a strong tendency to adhere to the texts and guidelines

Read more

Summary

Introduction

The International Committee of Radiological Protection (ICRP) recommended three fundamental principles (justification, optimization of protection, and application of dose limits) for radiation protection. It should be noted that with regard to medical exposure of patients, it is not appropriate to apply dose limits or dose constraints, because such limits would often do more harm than good [1, 2]. The justification and optimization of protection are very important in clinical practice. With the development of radiation medical technology increases in the medical exposure dose are of concern. The optimization of medical exposure is one of the major issues regarding radiation protection in the world, and the ICRP and the International Atomic Energy Agency (IAEA) recommended establishing diagnostic reference levels (DRLs) as tools for dose optimization [3, 4].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call