Abstract

Gassmann’s equations have been known for several decades and are widely used in geophysics. These equations are treated as exact if all the assumptions used in their derivation are fulfilled. However, a recent theoretical study claimed that Gassmann’s equations contain an error. Shortly after that, a 3D numerical calculation was performed on a simple pore geometry that verifies the validity of Gassmann’s equations. This pore geometry was simpler than those in real rocks but arbitrary. Furthermore, the pore geometry that was used did not contain any special features (among all possible geometries) that were tailored to make it consistent with Gassmann’s equations. In other recent studies, I also performed numerical calculations on several other more complex pore geometries that supported the validity of Gassmann’s equations. To further support the validity of these equations, I provide here one more convergence study using a more realistic geometry of the pore space. Given that there are several studies that rederive Gassmann’s equations using different methods and numerical studies that verify them for different pore geometries, it can be concluded that Gassmann’s equations can be used in geophysics without concern if their assumptions are fulfilled. MATLAB routines to reproduce the presented results are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.