Abstract

In our recent paper titled "Bi-layering at ionic liquid surfaces: a sum-frequency generation vibrational spectroscopy- and molecular dynamics simulation-based study" co-authored by T. Iwahashi, T. Ishiyama, Y. Sakai, A. Morita, D. Kim, and Y. Ouchi, Phys. Chem. Chem. Phys., 2020, 22, 12565 (hereafter referred to as IW), the sum-frequency (SF) spectra for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA] n = 4, 6, 8, 10, and 12) were reported. In particular, a clear decrease in the SF signals from the [TFSA]- anions with increasing chain length of the [Cnmim]+ cation (Fig. 5 of IW) was explained in terms of "head-to-head" bi-layer formation at the air/ionic liquid (IL) interface. A comment by M. Deutsch et al. (hereafter referred to as DE) questioned this report, claiming that our proposed structure is not consistent with a multilayered electron density (ED) profile obtained by X-ray reflectivity (XR).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call