Abstract

The spaceborne active sounders have been contributing invaluable vertically resolved information of atmospheric optical properties since the launch of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) in 2006. To ensure the continuity of climate studies and monitoring the global changes, one has to understand the differences between lidars operating at different wavelengths, flying at different orbits, and utilizing different observation geometries, receiving paths, and detectors. In this article, we show the results of an intercomparison study of ALADIN (Atmospheric Laser Doppler INstrument) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidars using their scattering ratio (SR) products for the period of 28/06/2019−31/12/2019. We suggest an optimal set of collocation criteria (Δdist < 1º; Δtime < 6 h), which would give a representative set of collocated profiles and we show that for such a pair of instruments the theoretically achievable cloud detection agreement for the data collocated with aforementioned criteria is 0.77 ± 0.17. The analysis of a collocated database consisting of ~78000 pairs of collocated nighttime SR profiles revealed the following: (a) in the cloud-free area, the agreement is good indicating low frequency of false positive cloud detections by both instruments; (b) the cloud detection agreement is better for the lower layers. Above ~7 km, the ALADIN product demonstrates lower sensitivity because of lower backscatter at 355 nm and because of lower signal-to-noise ratio; (c) in 50 % of the analyzed cases when ALADIN reported a low cloud not detected by CALIOP, the middle level cloud hindered the observations and perturbed the ALADIN’s retrieval indicating the need for quality flag refining for such scenarios; (d) large sensitivity to lower clouds leads to skewing the ALADIN’s cloud peaks down by ~0.5 ± 0.4 km, but this effect does not alter the polar stratospheric cloud peak heights; (e) temporal evolution of cloud agreement quality does not reveal any anomaly for the considered period, indicating that hot pixels and laser degradation effects in ALADIN have been mitigated at least down to the uncertainties in the following cloud detection agreement values: 61 ± 16 %, 34 ± 18 % 24 ± 10 %, 26 ± 10 %, and 22 ± 12 % at 0.75 km, 2.25 km, 6.75 km, 8.75 km, and 10.25 km, respectively.

Highlights

  • Clouds play an important role in the energy budget of our planet: optically thick clouds reflect the incoming solar radiation, leading to cooling of the Earth, while thinner clouds act as “greenhouse films”, preventing escape of the Earth’s long-wave radiation to space

  • We show the results of an intercomparison study of ALADIN (Atmospheric Laser Doppler INstrument) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidars using their scattering ratio (SR) products for the period of 28/06/2019−31/12/2019

  • We suggest an optimal set of collocation criteria (Δdist < 1o; Δtime < 6h), which would give a representative set of collocated profiles and we show that for such a pair of instruments the theoretically achievable cloud detection agreement for the data collocated with aforementioned criteria is 0.77±0.17

Read more

Summary

Introduction

Clouds play an important role in the energy budget of our planet: optically thick clouds reflect the incoming solar radiation, leading to cooling of the Earth, while thinner clouds act as “greenhouse films”, preventing escape of the Earth’s long-wave radiation to space. Despite an excellent daily coverage and daytime/nighttime observation capability (Menzel et al, 2016; Stubenrauch et al, 2017), the height uncertainty of the cloud 45 products retrieved from the observations performed by these spaceborne instruments is limited by the width of their channels’ contribution functions, which is on the order of hundreds of meters, and the vertical profile of the cloud cannot be retrieved with accuracy needed for climate feedback analysis This drawback is eliminated by active sounders, the very nature of which is based on altitude-resolved detection of backscattered radiation, and the vertical profiles of the cloud parameters are available from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar (Winker et al, 2003) and CloudSat radar 50 (Stephens et al, 2002) since 2006, CATS (Cloud-Aerosol Transport System) lidar on-board ISS provided measurements for over 33 months starting from the beginning of 2015 (McGill et al, 2015). There is an obvious need of ensuring the continuity of global spaceborne measurements and obtaining a seamless transition between the satellite missions (Chepher et al, 2018)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.