Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> Water stable isotope records from ice cores (δ<sup>18</sup>O and δD) are a critical tool for constraining long-term temperature variability in the high-latitudes. However, precipitation in Antarctica consists of semi-continuous small events and intermittent extreme events. In regions of high-accumulation, this can bias ice core records towards recording the synoptic climate conditions present during extreme precipitation events. In this study we utilise a combination of ice core data, re-analysis products and models to understand how precipitation intermittency impacts the temperature records preserved in an ice core from Mount Brown South in East Antarctica. Extreme precipitation events represent only the largest 10 % of all precipitation events, but they account for 44 % of the total annual snowfall at this site leading to an over-representation of these events in the ice core record. Extreme precipitation events are associated with high-pressure systems in the mid-latitudes which cause increased transport of warm and moist air from the southern Indian Ocean to the ice core site. Warm temperatures associated with these events result in a +2.8 °C warm bias in the mean annual temperature when weighted by daily precipitation, and water isotopes in the Mount Brown South ice core are shown to be significantly correlated with local temperature when this precipitation-induced temperature bias is included. The Mount Brown South water isotope record spans more than 1000 years and will provide a valuable regional reconstruction of long-term temperature and hydroclimate variability in the data-sparse southern Indian Ocean region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.