Abstract
Volgo-Uralia is a Neoarchean easternmost part of the East European craton. Recent seismic studies of the Volgo-Uralian region provided new insights into the crustal structure of this area. In this study, we combine satellite gravity and seismic data in a common workflow to perform a complex study of Volgo-Uralian crustal structure which is useful for further basin analysis of the area. In this light, a new crustal model of the Volgo-Uralian subcraton is presented from a step-wise approach: (1) inverse gravity modeling followed by (2) 3D forward gravity modeling. First, inversion of satellite gravity gradient data was applied to determine the Moho depth for the area. Density contrasts between crust and mantle were varied laterally according to the tectonic units present in the region, and the model is constrained by the available active seismic data. The Moho discontinuity obtained from the gravity inversion was consequently modified and complemented in order to define a complete 3D crustal model by adding information on the sedimentary cover, upper crust, lower crust, and lithospheric mantle layers in the process of forward gravity modeling where both seismic and gravity constraints were respected. The obtained model shows crustal thickness variations from 32 to more than 55 km in certain areas. The thinnest crust with a thickness below 40 km is found beneath the Pericaspian basin, which is covered by a thick sedimentary layer. The thickest crust is located underneath the Ural Mountains as well as in the center of the Volga-Uralian subcraton. In both areas the crustal thickness exceeds 50 km. At the same time, initial forward gravity modeling has shown a gravity misfit of ca. 95 mGal between the measured Bouguer gravity anomaly and the forward calculated gravity field in the central area of the Volga-Uralian subcraton. This misfit was interpreted and modeled as a high-density lower crust which possibly represents underplated material. Our preferred crustal model of the Volga-Uralian subcraton respects the gravity and seismic constraints and reflects the main geological features of the region with Moho thickening in the cratons and under the Ural Mountains and thinning along the Paleoproterozoic rifts, Pericaspian sedimentary basin, and Pre-Urals foredeep.
Highlights
30 Crustal thickness and thicknesses of individual layers of the Earth’s crust play a determining role in estimating the thermal field due to the relative abundance of the radioactive heat-producing elements in the crust (Beardsmore and Cull, 2001; Bouman et al, 2015; Hantschel and Kauerauf, 2009)
50 In this paper, we present a novel model of the Volga-Uralian subcraton’s crustal structure based on inverse and forward 3D gravity modeling with seismic constraints
A new crustal model of the Volga-Uralian subcraton was obtained throughout the gravity field inversion and forward gravity modeling
Summary
30 Crustal thickness and thicknesses of individual layers of the Earth’s crust play a determining role in estimating the thermal field due to the relative abundance of the radioactive heat-producing elements in the crust (Beardsmore and Cull, 2001; Bouman et al, 2015; Hantschel and Kauerauf, 2009) This fact is important in the case of the Volgo-Uralian subcraton as it is located underneath the Volga-Ural oil and gas-bearing province with several giant oil fields, where the maturity of the organic-rich rocks is considered to be tightly related to the temperature distribution in the crust The Volgo-Uralian part of the EEC is mostly embedded in the East European (Russian) platform, and like the rest of the platform, 40 it does not show any significant topographic variations It represents a flat area with absolute relief heights ranging from 50 to 250 m for most of the territory. Several recent crustal models which encompass Volgo-Uralia are based for the most part on regional seismic investigations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.