Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Spaceborne microwave remote sensing (300 MHz&ndash;100 GHz) provides a valuable method for characterizing environmental changes, especially in arctic-boreal regions (ABR) where ground observations are generally spatially and temporally scarce. Although direct measurements of carbon fluxes are not feasible, spaceborne microwave radiometers and radar can monitor various important surface and near-surface variables that affect carbon cycle processes such as respiratory carbon dioxide (CO<sub>2</sub>) fluxes, photosynthetic CO<sub>2</sub> uptake, and processes related to net methane (CH<sub>4</sub>) exchange including CH<sub>4</sub> production, transport, and consumption. Examples of such controls include soil moisture and temperature, surface freeze/thaw cycles, vegetation water storage, snowpack properties and land cover. Microwave remote sensing also provides a means for independent aboveground biomass estimates that can be used to estimate aboveground carbon stocks. The microwave data record spans multiple decades going back to the 1970s with frequent (daily to weekly) global coverage independent of atmospheric conditions and solar illumination. Collectively, these advantages hold substantial untapped potential to monitor and better understand carbon cycle processes across the ABR. Given rapid climate warming across the ABR and the associated carbon cycle feedbacks to the global climate system, this review argues for the importance of rapid integration of microwave information into ABR carbon cycle science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.