Abstract

Many CMIP6 models exhibit a substantial cold bias in global mean surface temperature (GMST) in the latter part of the 20th century. An overly strong negative aerosol forcing has been suggested as a leading contributor to this bias. An updated configuration of UKESM1, UKESM1.1, has been developed with the aim of reducing the historical cold bias in this model. Changes implemented include an improved representation of SO2 dry deposition along with several other smaller modifications to the aerosol scheme and a retuning of some uncertain parameters of the fully coupled Earth System Model. The Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, a 6-member historical ensemble and a subset of future scenario simulations are completed. In addition, the total anthropogenic effective radiative forcing (ERF), its components and the effective and transient climate sensitivities are also computed. The UKESM1.1 pre-industrial climate is warmer than UKESM1 by up to 0.75 K and a significant improvement in the historical GMST record is simulated with the magnitude of the cold bias reduced by over 50 %. The warmer climate increases ocean heat uptake in the northern hemisphere oceans and reduces Arctic sea ice in better agreement with observations. Changes to the aerosol and related cloud properties are the key drivers of the improved GMST simulation despite only a modest change in aerosol ERF (+0.08 Wm-2). The total anthropogenic ERF increases from 1.76 Wm-2 in UKESM1 to 1.84 Wm-2 in UKESM1.1. The effective climate sensitivity (5.27 K) and transient climate response (2.64 K) remain largely unchanged from UKESM1 (5.36 K and 2.76 K respectively).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call