Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> South Asian monsoon rainfall varies rapidly in the paleoclimate record, and this has been interpreted using simple models as arising from tipping points. This study explores a class of simple monsoon models, based on convective quasi-equilibrium, and the bifurcations permitted by their mathematical forms. Specifically, low-order models are derived starting from the Quasi-equilibrium tropical circulation model (QTCM) to examine the bifurcations present. Previous studies that have pointed to an abrupt transition in low-order monsoon models typically identify a saddle node bifurcation occurring as a result of changes in the radiation budget. The present study shows how such saddle node structures arise across a wide range of modeling assumptions and parameter values, and yet permit a continuous transition into and out of precipitating regimes without any bifurcation being physically manifest. This is because the bifurcation points lie in a regime that is not physically relevant when the dry thermal stratification is sufficiently large. As a result, these low-order models can be interpreted as possessing abrupt transitions that are latent in the equations but do not express themselves physically. However, when the dry thermal stratification is reduced, bifurcations can occur. This paper also shows that these latent saddle-node structures are themselves part of the unfolding of a pitchfork bifurcation. These findings help understand the role of stabilizing phenomena on the general absence of abrupt monsoon transitions despite the presence of nonlinear terms in these models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.