Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Subglacial floods are hazardous events. Since seismic tremor accompanies them, the source can be located and tracked in space and time using a seismic array. However, understanding how these seismic signals are generated remains elusive. Here, we study the seismic characteristics of the largest measured flood from the Eastern Skaft&aacute; cauldron, Iceland. We track the propagation of the flood in 2015 using two seismic arrays and a local seismic network. Data from three GPS instruments above the cauldron lake and the subglacial flood path and from hydrological instruments in the Skaft&aacute; river aid the interpretation. We find that as the water drained from the lake, quakes were generated in the area around the cauldron and the glacier surface subsided by more than 100 m.We detected several-hours-long, non-harmonic tremor migrating downglacier following the subglacial flood front. We suggest that this tremor is composed of repeated, closely spaced icequakes generated as the glacier was being lifted, cracked and deformed enabling the subglacial water flow. When the lake had largely drained, we recorded minute-long tremor bursts with hour-long harmonic tails emanating from the cauldron area. Body waves compose the bursts. We interpret them as hydrothermal explosions in the geothermal system underlying the cauldron, followed by vigorous boiling due to the pressure drop within the hydrothermal system as a consequence of the lowering of the water level in the lake. We conclude that the three different tremor characteristics are associated with three different geophysical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.