Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> The analysis of englacial layers using radio-echo sounding data enables the characterisation and reconstruction of current and past ice-sheet flow. Despite the Lambert Glacier catchment being one of the largest in Antarctica, discharging ~16 % of East Antarctica&rsquo;s ice, its englacial architecture has been little analysed. Here, we present a comprehensive analysis of Lambert Glacier&rsquo;s englacial architecture using radio-echo sounding data collected by the Antarctica's Gamburtsev Province Project (AGAP) North survey. We used an &ldquo;internal-layering continuity index&rdquo; (ILCI) to characterise the internal architecture of the ice and identify four macro-scale ILCI zones with distinct glaciological contexts. Whilst the catchment is dominated by continuous englacial layering, disrupted or discontinuous layering is highlighted by the ILCI at both the onset of enhanced ice flow (defined here as &gt;15 ma<sup>&minus;1</sup>) and along the shear margin, revealing the transition from internal-deformation-controlled to basal-sliding-dominated ice flow. These zones are characterised by buckled and folded englacial layers which align with the current ice-flow regime, and which we interpret as evidence that the flow direction of the Lambert Glacier trunk has changed little, if at all, during the Holocene. However, disturbed englacial layers along a deep subglacial channel that does not correspond to modern ice-flow routing suggest that ice-flow change has occurred in a former tributary which fed Lambert Glacier from grid north. As large outlet systems such as Lambert Glacier are likely to play a vital role in the future drainage of the East Antarctic Ice Sheet, constraining their englacial architecture to reconstruct their past ice flow and assess basal conditions is important.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.