Abstract

Around 10 % of unstable rock slopes in Norway are possibly underlain by widespread permafrost. Permafrost thaw and degradation may play a role in slope destabilization and more knowledge about rock wall permafrost in Norway is needed to investigate possible links between ground thermal regime, geomorphological activity and natural hazards. Here, we assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. We model ground temperature using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles crossing monitored rock walls in Norway. The simulation results show the distribution of sporadic to continuous permafrost along the modelled profiles. Ground temperature at 20 m depth in steep rock faces increased by 0.2 °C decade-1 on average since the 1980s. Rates of ground temperature change increase with elevation within a single rock wall section. Multi-dimensional thermal effects are in general smaller in Norway than in e.g. the European Alps due to gentler mountain topography and less aspect-related variations in ground surface temperature. Nevertheless, the steepest mountains are still sensitive to even small differences in ground surface temperature. This study further demonstrates how rock wall permafrost distribution and/or rock wall temperature increase rates are influenced by factors such as surface air temperature uncertainties, surface offsets arising from the incoming shortwave solar radiation, snow conditions in, above and below rock walls, rock wall geometry and size, adjacent blockfield-covered plateaus or glaciers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call