Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Fertilization managements have important impacts on soil P transformation, turnover, and bioavailability. Thus, long-term fertilization experiments (~38 years) with the application of different inorganic and organic fertilizers in paddy red soils were conducted to determine their effect on P pool accumulation and microbial communities, especially for phosphate solubilizing microorganisms (PSM). Long-term inorganic P fertilization increased the concentrations of total P (~479 mg/kg), available P (~417 mg/kg), and inorganic P (~18 mg/kg), but manure fertilization accelerated the accumulation of organic P, especially for orthophosphate monoesters (e.g. myo-IHP, ~12 mg/kg). Long-term mineral fertilization decreased bacterial richness, evenness, and complexation of bacterial networks. In contrast, long-term manure fertilization and rhizosphere accumulated more amounts of total carbon, total nitrogen, and organic carbon, as well as regulated the soil pH, thus improving the separation of bacterial communities. Unlike bacteria, the responses of fungi to those factors were not sensitive. Furthermore, PSM compositions were greatly influenced by fertilization managements and rhizosphere. For example, inorganic P fertilization increased the abundance of <em>Thiobacillus</em> (i.e. the most abundant phosphate solubilizing bacteria (PSB) in this study) and shifted the community structure of PSB. Correspondingly, the concentrations of inorganic and total P were the key factors for the variation of PSB community structure. These findings are beneficial for understanding P accumulation, responses of PSB, and soil P sustainable fertility under different fertilization strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call