Abstract
The aims of this study were to determine the groundwater quality index (GQI) using an averaged neural network and evaluate its field applicability with two-dimensional (2D) spatial analysis. The GQI was computed using 29 water quality parameters obtained at 3,552 portable groundwater wells used as drinking water sources. The GQI was divided into the following three grades: ‘worrisome’, <0.89 (20.1 % of the wells); ‘good’, 0.89–0.94 (62.8 %); and ‘very good’, >0.94 (17.1 %). Based on the random forest, the most important water quality parameters were general bacteria, turbidity and nitrate. The 2D spatial analysis confirmed notable differences in the GQI grades among regions. The 10-year long-term groundwater quality monitoring in the ‘worrisome’ grade showed the nitrate and chloride concentrations have continuously increased. These results indicate that the coupling of the GQI with 2D spatial analysis is a promising approach that can be applied in groundwater management and vulnerability assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.