Abstract

The tsunami hazard posed by the Flores backarc thrust, which runs along the northern coast of the islands of Bali and Lombok, Indonesia, is poorly studied compared to the Sunda megathrust, situated ~250 km to the south of the islands. However, the 2018 Lombok earthquake sequence demonstrated the seismic potential of the western Flores Thrust when a fault ramp beneath the island of Lombok ruptured in two Mw 6.9 earthquakes. Although the uplift in these events mostly occurred below land, the sequence still generated 1–2.5 m-high local tsunamis along the northern coast of Lombok (Wibowo et al., 2021). Historical records show that the Flores fault system in the Lombok and Bali region has generated at least six ≥ Ms 6.5 tsunamigenic earthquakes since 1800 CE. Hence, it is important to assess the possible tsunami hazard represented by this fault system. Here, we focus on the submarine fault segment located between the islands of Lombok and Bali (below the Lombok Strait). We assess modeled tsunami patterns generated by fault slip in six earthquake scenarios (slip of 1–5 m, representing Mw 7.2–7.9+), with a focus on impacts on the capital cities of Mataram, Lombok and Denpasar, Bali, which lie on the coasts facing the strait. We use a geologically constrained earthquake model informed by the Lombok earthquake sequence (Lythgoe et al., 2021), together with a high-resolution bathymetry dataset developed by combining direct measurements from GEBCO with sounding measurements from the official nautical charts for Indonesia. Our results show that fault rupture in this region could trigger a tsunami reaching Mataram in < 8 minutes and Denpasar in ~10–15 minutes, with multiple waves. For an earthquake with 3–5 m of coseismic slip, Mataram and Denpasar experience maximum wave heights of ~1.3–3.3 m and ~0.7 to 1.5 m, respectively. Furthermore, our earthquake models indicate that both cities would experience coseismic subsidence of 20–40 cm, exacerbating their exposure to both the tsunami and other coastal hazards. Overall, Mataram city is more exposed than Denpasar to high tsunami waves arriving quickly from the fault source. To understand how a tsunami would affect Mataram, we model the associated inundation using the 5 m slip model and show that Mataram is inundated ~55–140 m inland along the northern coast and ~230 m along the southern coast, with maximum flow depths of ~2–3 m. Our study highlights that the early tsunami arrival in Mataram, Lombok gives little time for residents to evacuate. Raising their awareness about the potential for locally generated tsunamis and the need for evacuation plans is important to help them respond immediately after experiencing strong ground shaking.

Highlights

  • The tsunami hazard posed by the Flores backarc thrust, which runs along the northern coast of the islands of Bali and Lombok, Indonesia, is poorly studied compared to the Sunda megathrust, situated ~250 km to the south of the islands

  • We study the tsunami potential associated with coseismic slip on the blind fault ramp below Lombok Strait, located between the islands of Lombok and Bali

  • We focus on the tsunami patterns near the capital cities of Mataram, Lombok and Denpasar, Bali, which both lie on the coasts facing the strait

Read more

Summary

Introduction

Most tsunami studies focus on earthquakes sourced by subduction zones, as they have high potential to generate 40 destructive tsunamis (e.g., Mw 9.1 2004 Sumatra and Mw 9.0 2011 Tohoku earthquakes). Fewer studies focus on tsunamis generated by back-arc thrust faults within the upper plate that accommodate a component of plate convergence (Silver and Reed, 1988). We assess the tsunami hazard associated with the westernmost segment of the Flores Thrust, a back-arc thrust that extends for >1,500 km, accommodating a portion of the convergence between the Indo-Australian and Sunda Plates (Fig. 1a). Unlike its eastern segment, where the 1992 Mw 7.9 Flores Island earthquake occurred, the 50 western part of the fault has not hosted devastating tsunamis in recent years, historical records and previous studies show that it has generated at least eight tsunamigenic earthquakes The recent 2018 Lombok earthquake-triggered tsunamis were relatively minor because the earthquakes mostly occurred beneath the island itself and not offshore; the occurrence of the 2018 Lombok earthquakes 55 gives new insights into the activity and geometry of this fault segment, and highlights the risk of earthquakes and associated tsunamis along strike

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call