Abstract
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development and river blockage hit Radurschl Valley (Ötztal Alps, Tyrol) on 13 August 2019. Compounding effects from multivariate permafrost degradation and drainage network development initiated the complex process chain. The debris flow dammed the main river of the valley, impounding a water volume of 120,000 m3 that was partly drained by excavation to prevent a potentially catastrophic outburst flood. Since the environmental forces inducing the debris flow evolved under ambiguous conditions, potentially destabilizing factors were analyzed systematically to deduce the failure mechanism and establish a basis for multi hazard assessment in similar settings. Identification and evaluation of individual factors revealed a critical combination of topographical and sedimentological disposition, climate, and weather patterns driving the evolution of thermokarst and debris flow. Progressively changing groundwater flow and storage patterns characterizing the hydraulic configuration within the frozen sediment accumulation governed the slope stability of the rock glacier front. The large amount of mobilizable sediment, dynamically changing internal structure, and substantial water flow along a rapidly evolving channel network eroded into the permafrost body, render active rock glaciers complex multi hazard elements in periglacial, mountainous environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.