Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> The Integrated Source Apportionment Method (ISAM) has been revised in the Community Multiscale Air Quality (CMAQ) model. This work updates ISAM to maximize its flexibility, particularly for ozone (O<sub>3</sub>) modeling, by providing multiple attribution options, including products inheriting attribution fully from nitrogen oxide reactants, fully from volatile organic compound (VOC) reactants, equally to all reactants, or dynamically to NO<sub>x</sub> or VOC reactants based on the indicator gross production ratio of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to nitric acid (HNO<sub>3</sub>). This study's primary objective is to document these ISAM updates and demonstrate their impacts on source apportionment results for O<sub>3</sub> and its precursors. Additionally, the ISAM results are compared with the Ozone Source Apportionment Technology (OSAT) in the Comprehensive Air-quality Model with Extensions (CAMx) and the brute force method (BF). All comparisons are performed for a 4 km horizontal grid resolution application over the northeast U.S. for a selected two-day summer case study (August 9th and 10th, 2018). General similarities among ISAM, OSAT, and BF results add credibility to the new ISAM algorithms. However, some discrepancies in magnitude or relative proportions among tracked sources illustrate the distinct features of each approach while others may be related to differences in model formulation of chemical and physical processes. Despite these differences, OSAT and ISAM still provide useful apportionment data by identifying the geographical and temporal contributions of O<sub>3</sub> and its precursors. Both OSAT and ISAM attribute the majority of O<sub>3</sub> and NO<sub>x</sub> contributions to boundary, mobile, and biogenic sources, whereas the top three contributors to VOCs are found to be biogenic, boundary, and area sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.