Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Accurate flood events simulation and prediction, enabled by effective models and reliable data, are critical for mitigating the potential risk of flood disaster. This study aims to investigate the impacts of spatio-temporal resolutions of precipitation on flood events simulation in a large-scale catchment of China. We use the high spatio-temporal resolutions Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) products and a gauge-based product as precipitation forcings for hydrologic simulation. Three hydrological models (HBV, SWAT, and DHSVM) and a data-driven model (Long Short-Term Memory (LSTM) network) are utilized for flood events simulation. Two calibration strategies are carried out, one of which targets at matching the flood events and the other one is the conventional strategy to match continuous streamflow. The results indicate that the event-based calibration strategy improves the performance of flood events simulation, compared with conventional calibration strategy, except for DHSVM. Both hydrological models and LSTM yield better flood events simulation at finer temporal resolution, especially in flood peaks simulation. Furthermore, SWAT and DHSVM are less sensitive to the spatial resolutions of IMERG, while the performance of LSTM obtains improvement when degrading the spatial resolution of IMERG-L. Generally, the LSTM outperforms the hydrological models in most flood events, which implies the usefulness of the deep learning algorithms for flood events simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call