Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> Decreasing sea ice extent in summer caused by climate change is affecting the carbon cycle of the Arctic Ocean. In this study, surface sediments across the western Arctic Ocean are investigated to characterize sources of sedimentary organic carbon (OC). Bulk organic parameters (total organic carbon, total nitrogen, δ<sup>13</sup>C<sub>org</sub> and δ<sup>15</sup>N) combined with molecular organic biomarkers (e.g., sterols and highly branched isoprenoids (HBIs)) are applied to distinguish between sympagic, pelagic, and terrestrial OC. Furthermore, downcore profiles of these parameters were also generated from the Chukchi Sea R1 core (74° N) to evaluate changes in the relative contribution of these three components of sedimentary OC over the last 200 years with decreasing sea ice. Our data evidence that from 1820s to 1930s, prevailing high and variable sea ice cover inhibited <em>in situ</em> primary production resulting in prominent land-derived material stored in sediments. From 1930s to 1980s, with the gradual decline of sea ice, primary production increased progressively. The ratio of sympagic and pelagic OC began to rise to account for a larger portion of sedimentary OC. Since 1980s, accelerated sea ice loss led to enhanced primary production, stabilizing over the last decades due to freshwater induced surface ocean stratification in summer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.