Abstract
To better understand the role of atmospheric dynamics in modulating surface concentrations of fine particulate matter (PM2.5), we relate the anti-cyclone wave activity (AWA) metric and PM2.5 data from the Interagency Monitoring of Protected Visual Environment (IMPROVE) data for the period of 1988–2014 over the US. The observational results are compared with hindcast simulations over the past two decades using the National Center for Atmospheric Research-Community Earth System Model (NCAR CESM). We find that PM2.5 is positively correlated (up to R = 0.65) with AWA changes close to the observing sites using regression analysis. The composite AWA for high aerosol days (all daily PM2.5 above the 90th percentile) shows a similarly strong correlation between PM2.5 and AWA. The most prominent correlation occurs in the Midwestern US. Furthermore, the higher quantiles of PM2.5 levels are more sensitive to the changes in AWA. For example, we find the averaged sensitivity of the 90th percentile PM2.5 to changes in AWA is approximately three times as strong as the sensitivity of 10th percentile PM2.5 at one site (Arendtsville, Pennsylvania; 39.92° N, 77.31° W). The higher values of the 90th percentile compared to the 50th percentile in quantile regression slopes are most prominent over the northeastern US. In addition, future changes in US PM2.5 based only on changes in climate are estimated to increase PM2.5 concentrations due to increased AWA in summer over areas where PM2.5 variations are dominated by meteorological changes, especially over the western US. Changes between current and future climates in AWA can explain up to 75 % of PM2.5 variability using a linear regression model. Our analysis indicates that higher PM2.5 concentrations occur when a positive AWA anomaly is prominent, which could be critical for understanding how pollutants respond to changing atmospheric circulation, as well as developing robust pollution projections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.