Abstract

Essentially all hydrogeological processes are strongly influenced by the subsurface spatial heterogeneity and the temporal variation of environmental conditions, hydraulic properties, and solute concentrations. This spatial and temporal variability needs to be considered when studying hydrogeological processes in order to employ adequate mechanistic models or perform upscaling. The scale at which a hydrogeological system should be characterized in terms of its spatial heterogeneity and temporal dynamics depends on the studied process and it is not always necessary to consider the full complexity. In this paper, we identify a series of hydrogeological processes for which an approach coupling the monitoring of spatial and temporal variability, including 4D imaging, is often necessary: (1) groundwater fluxes that control (2) solute transport, mixing and reaction processes, (3) vadose zone dynamics, and (4) surface-subsurface water interaction occurring at the interface between different subsurface compartments. We first identify the main challenges related to the coupling of spatial and temporal fluctuations for these processes. Then, we highlight some recent innovations that have led to significant breakthroughs in this domain. We finally discuss how spatial and temporal fluctuations affect our ability to accurately model them and predict their behavior. We thus advocate a more systematic characterization of the dynamic nature of subsurface processes, and the harmonization of open databases to store hydrogeological data sets in their four-dimensional components, for answering emerging scientific question and addressing key societal issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call