Abstract

Soil degradation is a global challenge that is intrinsically linked to climate change and food security. Soil degradation has many causes, but all degraded soils suffer from poor soil structure. The UN’s Sustainable Development Goals 12, 13 and 15 strive towards responsible consumption and production, building a zero-waste circular economy, achieving net zero by 2030 and reversing land degradation to protect one of our most valuable assets, soil. Global efforts to stop and even reverse soil degradation require sources of both organic and inorganic materials to rebuild soil structure. The increasing global production of water treatment residual (WTR), an organo-mineral waste product from clean water treatment, means that the sustainable reuse of this waste provides a potential timely opportunity. Recycling or reuse of WTR to land is commonplace across the world but is subject to limitations based on the chemical properties of the material. Very little work has focused on the physical impacts of Fe-WTR application and its potential to rebuild soil structure particularly improving its ability to hold water and resist the effects of flooding. This paper presents novel research in which the use of Fe-WTR and Fe-WTR/compost [1:1] co-amendment has shown to be beneficial for a soil’s water retention, permeability, volume change, and strength properties. Application rates of WTR were 10 and 30 % by dry mass. Compared to the control soil, co-amended samples have 5.7 times the hydraulic conductivity (570 % improvement), 54 % higher shear strength and 25 % greater saturated water content. Single WTR amendment had 26 times the saturated hydraulic conductivity (2600 % improvement), 129 % higher shear strength and 13.7 % greater saturated water content. Data indicates that WTR can be added as a single amendment to significantly improve soil physical characteristics where shear strength and hydraulic conductivity are the most important factors in application. Although the co-application of Fe-WTR with compost provides a lesser improvement in shear strength and hydraulic conductivity compared to single WTR amendment, the co-amendment has the best water retention properties and provides supplementary organic content, which is beneficial for environmental applications where the soil health (i.e. ability to sustain ecosystem functions and support plants) is critical. We develop the term ‘flood holding capacity’ to holistically describe the physical ecosystem services that soil delivers, which incorporates not only the gravimetric water content but the extra water storage potential due to increases in volume that occur in organic rich soils, the transmissivity of the soil (hydraulic conductivity) and the shear strength of a soil, which determines how well a soil will resist the erosive forces of water movement.

Highlights

  • Soil health can be defined as the ability of soils to deliver critical ecosystem services such as plant growth, water storage and carbon storage

  • The amendment of a sandy loam soil with either Fe-water treatment residual (WTR) or with Fe-WTR and compost co-amendment has significant impacts on a soil’s flood holding capacity, which incorporates the parameters of water retention, hydraulic conductivity, volume change and shear strength

  • The following generalisations can be made on the changes in physical soil parameters; the single addition of WTR results in an increase in water content and reduction in dry density at saturation, increases the saturated hydraulic conductivity and shear strength of the soil compared to the control

Read more

Summary

Introduction

Soil health can be defined as the ability of soils to deliver critical ecosystem services such as plant growth, water storage and carbon storage. To date there are no known publications that have holistically investigated the potential of Fe-WTR to improve physical soil characteristics such as water retention (relationship between suction and water content), and permeability (hydraulic conductivity), volume change (soil shrinkage behaviour) and shear strength. By understanding these three elements, one can assess the change in a soil’s ‘flood holding capacity’ due to amendment. The existing system of measuring ‘water holding capacity’ fails to take into account the ability of a soil to change its volume and the effectiveness of amendments to soil will be discussed in reference to their contribution to flood holding capacity

Water treatment residual characteristics
The problem of WTR quantification
Land application of WTR
Use of WTR to improve physical soil characteristics
The use of Fe-WTR and compost to improve flood holding capacity
Materials
Material properties
Sample preparation and testing
Results and Discussion
Water content relationships
Soil volume change
Hydraulic conductivity
Shear strength
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.