Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Soil moisture (SM) plays a significant role in many natural and anthropogenic systems which are essential to supporting life on Earth. Thus, accurate measurement and assessment of changes in soil moisture globally is of great value, including long-term historical assessment. Since the on-board cycle and detailed parameters of disparate sensors are different, the European Space Agency established the Climate Change Initiative (CCI) program to harmonize the available multisource SM data, producing long time-series surface SM datasets starting from 1978 to the present. However, the Soil Moisture Active Passive (SMAP) mission, launched in 2015, has shown more satisfactory performance in both spatial accuracy and in capturing pattern of temporal changes. In this paper, a random forest (RF) model was proposed to extend the superior SMAP dataset historically (named RF_SMAP), using the corresponding CCI data time-series. We assumed that the temporal changes in the SMAP dataset are similar generally to those in the available CCI dataset. Accordingly, the RF model was constructed using the temporal characteristics extracted from the CCI SM v05.2 data (coupled with three terrain characteristics and two location characteristics), which was migrated to the prediction of the RF_SMAP dataset. The available <em>in-situ</em> SM data and the real SMAP data from April 2015 to April 2016 were used as references to validate the predicted RF_SMAP data. It was shown that compared with the CCI dataset, the predicted RF_SMAP dataset is closer to the <em>in-situ</em> SM data and the real SMAP data. Moreover, the historical RF_SMAP dataset is more accurate than the widely used Global Land Evaporation Amsterdam Model (GLEAM) dataset in terms of average root mean square error (RMSE), bias (Bias), and Kling-Gutpa efficiency (KGE). Thus, the RF_SMAP dataset was shown to be a reliable substitute for the historical CCI dataset, with an unbiased root mean square error (ubRMSE) of 0.035. The new long time-series RF_SMAP dataset, which will be available to download, will be of great value for a range of research in applications such as climate assessment, agricultural planning, food insecurity monitoring and drought assessment and monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.