Abstract

X chromosome inactivation is associated with a highly asynchronous pattern of DNA replication at most X-linked loci in females. We studied the human HPRT locus, which is subject to X inactivation and expressed from only the active homolog, with the goal of comparing replication properties between the active and inactive homologs in this region using a fluorescence in situ hybridization approach. We found that in normal female lymphoblasts this locus is replicated in a highly asynchronous manner across a broad, discrete 500-600 kb zone with earliest replication appearing at the gene coding sequence. This general timing profile is maintained in normal male lymphoblasts, as well as in hamster x human hybrid cells containing the active human X chromosome. However, the inactive human X chromosome in the hamster cell background does not appear to function in a fully equivalent manner to the normal inactive X chromosome in female cells. Furthermore, reactivation of the inactive human X chromosome in a hamster x human hybrid system by 5-azacytidine treatment and HAT selection restores early replication at the HPRT gene itself, but does not change the overall domain behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.