Abstract

Common fragile sites (CFSs) are loci that preferentially exhibit metaphase chromosome gaps and breaks after partial inhibition of DNA synthesis. The fragile site FRA3B, which lies within the FHIT tumor-suppressor gene, is a site of frequent heterozygous and homozygous deletions in many cancer cells and precancerous lesions. The great majority of FHIT and other CFS-associated gene rearrangements in tumors are submicroscopic, intralocus deletions of hundreds of kilobases that often result in inactivation of associated genes. Although CFS instability leads to chromosome gaps and breaks and translocations, there has been no direct evidence showing that CFS instability or replication stress can generate large submicroscopic deletions of the type seen in cancer cells. Here, we have produced FHIT/FRA3B deletions closely resembling those in tumors by exposing human-mouse chromosome 3 somatic hybrid cells to aphidicolin-mediated replication stress. Clonal cell populations were analyzed for deletions by using PCR, array comparative genomic hybridization (aCGH), and FISH. Thirteen percent to 23% of clones exhibited submicroscopic FHIT deletions spanning approximately 200-600 kb within FRA3B. Chromosomes with FRA3B deletions exhibited significantly decreased fragility of this locus, with a 2- to 12-fold reduction in metaphase gaps and breaks compared with controls. Sequence analysis showed no regions of homology at breakpoints and suggests involvement of NHEJ in generating the deletions. Our results demonstrate that replication stress induces a remarkably high frequency of tumor-like microdeletions that reduce fragility at a CFS in cultured cells and suggests that similar conditions during tumor formation lead to intralocus deletion and inactivation of genes at CFSs and perhaps elsewhere in the genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.