Abstract
To investigate the role of binding sites for Rep initiation protein in the replication of pSC101, a series of plasmids was constructed which carried different combinations of mutations in three binding sites within the minimal origin of replication. Mutation of all three sites reduced the affinity of purified Rep protein for the origin by 100-fold, as measured by a competition binding assay. Mutations in individual binding sites prevented binding of Rep protein to the mutant site but not to adjacent wild-type sites. Transformation efficiency, copy number, and stability over 150 generations were measured for each of the mutant plasmids. Unlike other similar plasmids related to pSC101, the Rep binding sites were found not to be equivalent. A mutation in the site RS1, proximal to repeated sequences which serve as DnaB helicase entry sites in oriC, had a severe effect on replication activity. A similar mutation in the distal site RS3 caused a reduction in copy number, but the mutant plasmid was stably maintained despite a broadened distribution of copy number within the population. A mutation in the middle RS2 site had no significant effect on pSC101 replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.