Abstract

A cell model of primary monocytes and other mononuclear cells isolated from equine blood was used to study the kinetics of West Nile virus (WNV) replication in a natural host. West Nile virus has emerged on the North American continent as a significant cause of morbidity and mortality in a wide range of avian and mammalian species. While other flaviviruses are known to infect monocytes and lymphocytes, the ability of WNV to productively replicate in specific immune cells of peripheral blood has not been assessed. In this study, enriched populations of monocytes and lymphocytes as well as purified monocytes, CD4+, CD8+ and B lymphocytes were obtained from equine blood. Productive WNV replication was demonstrated by viral growth curves, quantitative RT-PCR for WNV RNA, and indirect immunofluorescence detection of a non-structural WNV protein. Enriched and purified monocytes consistently supported productive viral replication in blood from nine of nine horses tested while a minor subset of CD4+ lymphocytes supported productive replication in cells from three of the nine horses tested. Peak viral titers of 3.2–6.6 log 10 PFU/ml were reached at 6 days post-inoculation (p.i.) and titers were maintained through 10–15 days p.i. Activation of monocytes with bacterial lipopolysaccharide, which resulted in activation of nuclear transcription factor κB (NF-κB) plus elevation of nitric oxide and type I interferon levels, reduced or eliminated WNV replication. These results suggest that immune cells of the peripheral blood may serve as target cells for initial replication of WNV and may play a role in subsequent viral dissemination. Furthermore, primary equine immune cell cultures represent a potentially useful model of a natural WNV host when testing compounds such as antivirals for use in WNV treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call