Abstract

In this paper, we report on the replication of surfaces of Lotus and Colocasia leaves onto thin polymeric films using a capillarity-directed soft lithographic technique. The replication was carried out on poly(methyl methacrylate) (PMMA) film spin coated on silicon wafer using poly(dimethyl siloxane) (PDMS) molds. The friction properties of the replicated surfaces were investigated at micro-scale in comparison with those of PMMA thin film and uncoated silicon wafer. The coefficients of friction of the replicated surfaces were almost five times lower than those of the PMMA thin film and four times lower than those of the uncoated silicon wafer. The superior micro-tribological properties of the replicated surfaces could be attributed to the reduced real area of contact projected by the surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.