Abstract

ABSTRACT Previous experiments showed that a synchronous population of Tetrahymena could divide even though DNA replication was blocked during the latter half of the preceding S-period by addition of methotrexate plus uridine (M + U). Furthermore, it was found that the DNA fraction which was in replication at the time of inhibition became localized in the cytoplasm following elimination from the nucleus at the time of division. When the inhibitory treatment (M + U) was removed prior to or at the time of the cell division the cells were found to engage in new DNA replication and continue growth. Two questions arose from these studies. First, is the DNA replication normal following release from M + U? Second, what is the fate of the cytoplasmic DNA? In the present paper DNA replication has been studied using incorporation of 5-bromodeoxyuridine and centrifugation of the labelled DNA in CsCl gradients. It is concluded that the DNA which finished replication prior to the effect of the M + U treatment replicates again during the S-period of the next cell generation. On the other hand, the DNA fraction which was stalled in replication and subsequently eliminated from the nucleus also replicates in the cytoplasm in the next generation but during G2 period, out of phase with the undamaged nuclear DNA. The cytoplasmic DNA replication appeared to be a continuation of the replication initiated in the nucleus in the previous generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.