Abstract

Human immunodeficiency viruses (HIVs) and the related bovine lentiviruses bovine immunodeficiency virus (BIV) and Jembrana disease virus (JDV) utilize the viral Tat protein to activate viral transcription. The arginine-rich RNA-binding domains of the Tat proteins bind to their cognate transactivation response element (TAR) RNA hairpins located at the 5' ends of the viral mRNAs, resulting in enhanced processivity of RNA polymerase II. It has previously been shown that HIV type 1 (HIV-1) Tat requires the cellular cyclin T1 protein for high-affinity RNA binding whereas BIV Tat and JDV Tat bind with high affinity on their own and adopt distinct beta-hairpin conformations when complexed to RNA. Here we have engineered the BIV and JDV Tat-TAR interactions into HIV-1 and show that the heterologous interactions support viral replication, correlating well with their RNA-binding affinities. Viruses engineered with a variant TAR able to bind all three Tat proteins replicate efficiently with any of the proteins. In one virus containing a noncognate Tat-TAR pair that neither interacts nor efficiently replicates (HIV-1 TAR and BIV Tat), viral revertants were isolated in which TAR had become mutated to generate a functional BIV Tat binding site. Our results support the view that incremental changes to TAR structure can provide routes for evolving new Tat-TAR complexes while maintaining active viral replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.