Abstract

Water temperature is an important environmental factor for the outbreaks of fish rhabdovirus diseases. In the present study, to know the role of piscine rhabdoviral glycoproteins in the determination of replication temperature, several chimeric snakehead rhabdoviruses (SHRVs) and viral hemorrhagic septicemia viruses (VHSVs) expressing heterologous glycoproteins (rSHRV-Gvhsv, SHRV expressing VHSV G protein; rSHRV-Gsvcv, SHRV expressing spring viremia of carp virus G protein; rVHSV-Gshrv, VHSV expressing SHRV G protein; rVHSV-Gsvcv, VHSV expressing SVCV G protein) were generated using reverse genetics, and their replication characteristics at different temperatures were investigated. Furthermore, based on SHRV minigenome containing a reporter gene, the role of VHSV N, P, and L proteins in the determination of VHSV’s low-temperature replication was investigated. In Epithelioma papulosum cyprini (EPC) cells, rSHRV-Gvhsv could replicate only at low temperatures (15 and 20 °C) but not at 25 and 28 °C, while rSHRV-Gsvcv could replicate both low and high temperatures, indicating that VHSV G protein is a critical factor that determines the limit of replication-possible temperatures in VHSV. The range of replication-possible temperature of chimeric VHSVs (rVHSV-Gshrv and rVHSV-Gsvcv) was not different from that of rVHSV-wild (replicated only at 15 and 20 °C) in spite of having the G protein of high temperature-replicating viruses, suggesting that not only G protein but also other viral protein(s) would be involved in the determination of replication-possible temperature limit in VHSV. Cells harboring SHRV minigenome that expressing eGFP as a reporter protein were co-transfected with heterologous combinations of helper plasmids of SHRV and VHSV, through which we could exclude VHSV N and P proteins for the low-temperature replication of VHSV, because cells harboring SHRV minigenome showed fluorescence at high temperatures when VHSV N or P protein encoding plasmids were supplied. However, no fluorescence was observed in cells co-transfected with plasmids encoding SHRV N, SHRV P and VHSV L protein at all tested temperatures, suggesting that the combination of SHRV N, P and VHSV L proteins could not form a functional ribonucleoprotein (RNP) complex. Although we could not directly demonstrate the involvement of VHSV L protein in the temperature limit of VHSV replication, it is highly probable that not only VHSV G protein but also VHSV L protein may participate in the determination of VHSV replication temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call