Abstract

A new in vitro system for T4 DNA replication was developed by concentrating cell lysates on cellophane disks. The time course of [3H]dTTP incorporation into DNA by the system was separated into two phases: one was a very rapid incorporation which was terminated within 2 min (phase I reaction), and the other was a slow but continuous incorporation thereafter (phase II reaction). More than half of the phase I reaction product was Escherichia coli DNA, but the phase II reaction was mostly T4 DNA. Phase II reaction required four deoxyribonucleoside triphosphates, ATP, Mg2+, and KCl. 5-Hydroxymethyldeoxycytidine triphosphate was essential for the reaction and not substitutable by dCTP. The presence of KCN or NaN3 in the reaction mixture did not interfere with [3H]dTTP incorporation, but the addition of deoxyribonuclease completely degraded the system. Alkaline sucrose sedimentation analysis of phage II reaction product revealed that phase II reaction proceeded by the discontinuous mode of DNA replication as in vivo. After T4 infection, the activity for phase II reaction appeared in parallel with the activity of T4 phage DNA replication in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.