Abstract

The ability of bacteriophage SH-133 to replicate in heterotrophically (H-) and autotrophically (A-) grown Hydrogenomonas facilis was examined. Both the synthesis of infectious phage particles and the efficiency of plating (EOP) were reduced by 90% in A-grown cells. Adsorption of phage and lethal effects on H. facilis were identical in both systems. One-step growth experiments showed that cell lysis preceded the appearance of infectious particles in A-grown cells. Burst size studies with mixotrophically grown cells did not indicate the presence of an inhibitor of phage synthesis indigenous to autotrophic metabolism. DNA synthesis was identical in H- and A-grown infected cells; however, protein synthesis was significantly reduced in A-grown infected cells when compared with protein synthesis in H-grown infected cells. The data suggest that the reduction in EOP and phage synthesis in A-grown cells is caused by a defect in viral protein synthesis which results in the limited production of an essential viral protein at the time of cell lysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call