Abstract

The replication origin of plasmid P1 contains an array of five repeats (iterons) that bind the plasmid-encoded initiator RepA. Within the array lies the repA promoter, which becomes largely repressed on RepA binding (autorepression). One might expect that extra iterons produced on plasmid replication would titrate RepA and release the repression. The promoter, however, is induced poorly by extra iterons. The P1 copy number is reduced by extra iterons in the presence of the autorepressed repA gene but not when additional RepA is provided from constitutive sources. It has been proposed that the iteron-bound RepA couples with the promoter-bound RepA and thereby maintains repression. Although not the product of replication, we find that the act of replication itself can renew RepA synthesis. Replication apparently cleans the promoter of bound RepA and provides a window of opportunity for repA transcription. We propose that replication-induced transcription is required to ensure initiator availability in a system that is induced poorly when challenged with additional initiator binding sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.