Abstract

The orderly deposition of histones onto DNA is mediated by conserved assembly complexes, including chromatin assembly factor-1 (CAF-1) and the Hir proteins . CAF-1 and the Hir proteins operate in distinct but functionally overlapping histone deposition pathways in vivo . The Hir proteins and CAF-1 share a common partner, the highly conserved histone H3/H4 binding protein Asf1, which binds the middle subunit of CAF-1 as well as to Hir proteins . Asf1 binds to newly synthesized histones H3/H4 , and this complex stimulates histone deposition by CAF-1 . In yeast, Asf1 is required for the contribution of the Hir proteins to gene silencing . Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 comprise the HIR complex, which copurifies with the histone deposition protein Asf1. Together, the HIR complex and Asf1 deposit histones onto DNA in a replication-independent manner. Histone deposition by the HIR complex and Asf1 is impaired by a mutation in Asf1 that inhibits HIR binding. These data indicate that the HIR complex and Asf1 proteins function together as a conserved eukaryotic pathway for histone replacement throughout the cell cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.