Abstract

Plasmacytoid dendritic cells sense viral ssRNA or its degradation products via TLR7/8 and CpG motifs within viral DNA via TLR9. Although these two endosomal pathways operate independently of viral replication, little is known about the detection of actively replicating viruses in plasmacytoid dendritic cell (PDC). Replication and transcription of the viral genome of ssRNA viruses as well as many DNA viruses lead to the formation of cytosolic dsRNA absent in noninfected cells. In this study, we used human respiratory syncytial virus (HRSV) encoding a fusion (F) protein for direct cytosolic entry. Both HRSV infection and cytosolic delivery of a 65-nt dsRNA led to potent IFN-alpha induction in PDC, but not in myeloid dendritic cells. Inactivation of HRSV by UV irradiation abrogated IFN-alpha induction in PDC. The comparison of two respiratory syncytial virus (RSV) constructs carrying either the HRSV or the bovine RSV F protein revealed that F-mediated cytosolic entry of RSV was absolutely required for IFN-alpha induction in PDC. HRSV-induced IFN-alpha production was independent of endosomal acidification and of protein kinase R (PKR) kinase activity, as demonstrated with chloroquine and the PKR inhibitor 2-aminopurine, respectively. In contrast, the induction of IFN-alpha by the TLR7/8 ligand R848, by the TLR9 ligand CpG-A ODN 2216, and by inactivated influenza virus (TLR7/8 dependent) was completely blocked by 2-aminopurine. IFN-alpha induction by mouse pathogenic Sendai virus was not affected in PKR- and MyD88-deficient mice, confirming that a ssRNA virus, which is able to directly enter host cells via fusion at the plasma membrane, can be detected by PDC independently of PKR, TLR7/8, and TLR9.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.