Abstract

Tellurium stable isotope compositions and abundances (δ128/126Te relative to SRM 3156) are reported for 43 ordinary, enstatite, and Rumuruti chondrites, which together with results from a companion study on carbonaceous chondrites are used to assess the origin of volatile element fractionations in chondrites. Whereas Te isotope variations among carbonaceous chondrites predominantly reflect mixing between isotopically light chondrules/chondrule precursors and CI-like matrix, Te isotope variations among non-carbonaceous chondrites mainly result from Te redistribution during parent body thermal metamorphism. The enstatite chondrites in particular display increasingly heavy Te isotopic compositions and decreasing Te concentrations with increasing degree of metamorphism, indicating migration of isotopically light Te from the strongly metamorphosed inner parts towards the cooler outer regions of the parent bodies. By contrast, ordinary and Rumuruti chondrites display less systematic Te isotope variations, implying more localized redistribution of Te during parent body thermal metamorphism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.