Abstract

Mini-F is a fragment of the F plasmid, consisting of 9,000 base pairs, which carries all of the genes and sites required for replicon maintenance and control. Its copy number is one to two per chromosome. This plasmid is joined to ColE1, whose copy number is 16 to 20. Under normal circumstances the composite plasmid replication exhibited ColE1 characteristics, maintaining a high copy number. However, when ColE1 replication was inhibited by deoxyribonucleic acid polymerase I inactivation, its replication exhibited mini-F characteristics, maintaining a low copy number. These observations are in complete agreement with those of Timmis et al. (Proc. Natl. Acad. Sci. U.S.A. 71:4556-4560, 1974), who examined the behavior of a recombinant plasmid formed between pSC101 and ColE1. The transition from high to low copy number allowed us to examine the control system acting in cells carrying plasmids exhibiting intermediate copy numbers. The initiation of the mini-F replication system as represented by deoxyribonucleic acid synthesis of the composite plasmid was completely blocked when there were multiple copies of mini-F in a cell. It was not restored until the copy number was lowered to one to two, after which replication was first detected. ppF, a mini-F replicon packaged in a phage lambda head behaved similarly: its replication was completely shut off when the resident mini-F genome copy number was high and was inhibited partially when the resident mini-F genome copy number was low. These experiments clearly demonstrate that there is a switch-off mechanism acting on deoxyribonucleic acid synthesis (initiation) in a cell carrying mini-F, and its intensity is related to the plasmid copy number. This result supports the "inhibitor dilution model" proposed by Pritchard et al. (Symp. Soc. Gen. Microbiol. 19:263-297, 1969). The nature of the hypothetical inhibitor is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.