Abstract
In this paper, the problem of fault tolerance in grid computing is addressed and a novel adaptive task replication based fault tolerant job scheduling strategy for economy driven grid is proposed. The proposed strategy maintains fault history of the resources termed as resource fault index. Fault index entry for the resource is updated based on successful completion or failure of an assigned task by the grid resource. Grid Resource Broker then replicates the task (submitting the same task to different backup resources) with different intensity, based on vulnerability of resource towards faults suggested by resource fault index. Consequently, in case of possible fault at a resource the results of replicated task(s) on other backup resource(s) can be used. Hence, user job(s) can be completed within specified deadline and assigned budget, even on the event of faults at the grid resource(s). Through extensive simulations, performance of the proposed strategy is evaluated and compared with the Time Optimization and Checkpointing based Strategy in an economy driven grid environment. The experimental results demonstrate that in the presence of faults, proposed fault tolerant strategy improves the number of tasks completed with varied deadline and fixed budget as well as number of tasks completed with varied budget and fixed deadline. Additionally, the proposed strategy used a smaller percentage of deadline time as compare to both Time Optimization and Checkpointing based Strategy. Although the proposed strategy has a percentage of budget spent greater than that of Time Optimization Strategy and Checkpointing based Strategy, it is accepted as a proposed strategy in time optimization where the main objective is to maximize tasks completed within a given deadline. It can be concluded from the experiments that the proposed strategy shows improvement in satisfying the user QoS requirements. It can effectively schedule tasks and tolerate faults gracefully even in the presence of failures, but the costs are slightly higher in terms of budget consumption. Hence, the proposed fault tolerant strategy helps in sustaining user's faith in the grid, by enabling the grid to deliver reliable and consistent performance in the presence of faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.