Abstract

As computational clusters increase in size, their mean time to failure reduces drastically. Typically, checkpointing is used to minimize the loss of computation. Most checkpointing techniques, however, require central storage for storing checkpoints. This results in a bottleneck and severely limits the scalability of checkpointing, while also proving to be too expensive for dedicated checkpointing networks and storage systems. We propose a scalable replication-based MPI checkpointing facility. Our reference implementation is based on LAM/MPI; however, it is directly applicable to any MPI implementation. We extend the existing state of fault-tolerant MPI with asynchronous replication, eliminating the need for central or network storage. We evaluate centralized storage, a Sun-X4500-based solution, an EMC storage area network (SAN), and the Ibrix commercial parallel file system and show that they are not scalable, particularly after 64 CPUs. We demonstrate the low overhead of our checkpointing and replication scheme with the NAS Parallel Benchmarks and the High-Performance LINPACK benchmark with tests up to 256 nodes while demonstrating that checkpointing and replication can be achieved with a much lower overhead than that provided by current techniques. Finally, we show that the monetary cost of our solution is as low as 25 percent of that of a typical SAN/parallel-file-system-equipped storage system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.