Abstract

Mitochondria are subcellular organelles, devoted mainly to energy production in the form of ATP, that contain their own genetic system. Mitochondrial DNA codifies a small, but essential number of polypeptides of the oxidative phosphorylation system. The mammalian mitochondrial genome is an example of extreme economy showing a compact gene organization. The coding sequences for two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and 13 polypeptides are contiguous and without introns. The tRNAs are regularly interspersed between the rRNA and protein-coding genes, playing a crucial role in RNA maturation from the polycistronic transcripts. A single major non-coding region, called the D-loop region, contains the main regulatory sequences for transcription and replication initiation. This genetic organization has its precise correspondence in the mode of expression and distinctive structural features of the RNAs. The basic mechanisms of mitochondrial DNA transcription and replication and the main cis-acting elements playing a role in both processes have been determined. Many trans-acting factors involved in mitochondrial gene expression, including the RNA and DNA polymerases, have been cloned or identified. However, the regulatory mechanisms participating in mitochondrial gene expression are still poorly understood. The interest to complete this knowledge is increased by the involvement of mitochondria in human diseases, in basic processes such as heat production, Ca(2+) homeostasis and apoptosis, and by their potential role in ageing and carcinogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call