Abstract

The mechanisms of trinucleotide repeat expansions, underlying more than a dozen hereditary neurological disorders, are yet to be understood. Here we looked at the replication of (CGG)(n) x (CCG)(n) and (CAG)(n) x (CTG)(n) repeats and their propensity to expand in Saccharomyces cerevisiae. Using electrophoretic analysis of replication intermediates, we found that (CGG)(n) x (CCG)(n) repeats significantly attenuate replication fork progression. Replication inhibition for this sequence becomes evident at as few as approximately 10 repeats and reaches a maximal level at 30 to 40 repeats. This is the first direct demonstration of replication attenuation by a triplet repeat in a eukaryotic system in vivo. For (CAG)(n) x (CTG)(n) repeats, on the contrary, there is only a marginal replication inhibition even at 80 repeats. The propensity of trinucleotide repeats to expand was evaluated in a parallel genetic study. In wild-type cells, expansions of (CGG)(25) x (CCG)(25) and (CAG)(25) x (CTG)(25) repeat tracts occurred with similar low rates. A mutation in the large subunit of the replicative replication factor C complex (rfc1-1) increased the expansion rate for the (CGG)(25) repeat approximately 50-fold but had a much smaller effect on the expansion of the (CTG)(25) repeat. These data show dramatic sequence-specific expansion effects due to a mutation in the lagging strand DNA synthesis machinery. Together, the results of this study suggest that expansions are likely to result when the replication fork attempts to escape from the stall site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.