Abstract

A recent Cell paper (Chang & Tsao, 2017) reports an interesting discovery. For the face stimuli generated by a pretrained active appearance model (AAM), the responses of neurons in the areas of the primate brain that are responsible for face recognition exhibit a strong linear relationship with the shape variables and appearance variables of the AAM that generates the face stimuli. In this letter, we show that this behavior can be replicated by a deep generative model, the generator network, that assumes that the observed signals are generated by latent random variables via a top-down convolutional neural network. Specifically, we learn the generator network from the face images generated by a pretrained AAM model using a variational autoencoder, and we show that the inferred latent variables of the learned generator network have a strong linear relationship with the shape and appearance variables of the AAM model that generates the face images. Unlike the AAM model, which has an explicit shape model where the shape variables generate the control points or landmarks, the generator network has no such shape model and shape variables. Yet it can learn the shape knowledge in the sense that some of the latent variables of the learned generator network capture the shape variations in the face images generated by AAM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.